3 liens privés
Class'Code IAI est un MOOC citoyen accessible à toutes et à tous de 7 à 107 ans pour se questionner, expérimenter et comprendre ce qu’est l’Intelligence Artificielle.
À la fin de ce cours, vous saurez :
- décrypter le discours autour de l'IA pour passer des idées reçues à des questions sur lesquelles s'appuyer pour comprendre,
- manipuler des programmes d'IA pour se faire une opinion par soi-même,
- partager une culture minimale sur le sujet, pour se familiariser avec le sujet au-delà des idées reçues,
- discuter le sujet, ses applications, son cadre avec des interlocuteurs variés pour contribuer à la construction des applications de l’IA
Arrêtée en 2019, la centrale nucléaire américaine de Three Mile Island en Pennsylvanie reprend du service. La raison ? Microsoft souhaite exploiter l'énergie produite par l'un des réacteurs – l'unité 1 – pour alimenter ses centres de données aux Etats-Unis.
L’intelligence artificielle (IA) est-elle davantage un remède qu’un poison climatique ? Les géants de la tech, de Google à Microsoft, le clament haut et fort : les apports de ces technologies pour décarboner les économies et s’adapter au réchauffement seront à terme majeurs. A l’inverse, nombre d’experts préviennent que ces gains restent hypothétiques. L’empreinte carbone et la consommation électrique de services comme ChatGPT, d’ores et déjà importantes, risquent de devenir colossales. Ils appellent à la mesure face à une solution « utile » mais pas « miracle ».
L'État de la situation sur les impacts sociétaux de l'intelligence artificielle et du numérique fait état des connaissances actuelles sur les impacts sociétaux de l'IA et du numérique, structurées autour des sept axes de recherche de l'Obvia : santé, éducation, travail et emploi, éthique et gouvernance, droit, arts et médias, et transition socio-écologique. Hypertrucages, désinformation, empreinte environnementale, droit d'auteur, évolution des conditions de travail, etc.
Le document recense les grandes questions de recherche soulevées par le déploiement progressif de ces nouvelles technologies, auxquelles viennent s'ajouter des cas d'usages et de pistes d'action. Il s'impose ainsi comme un outil complet et indispensable pour accompagner la prise de décision dans tous les secteurs bouleversés par ces changements.
L’écoconception des équipements et services numériques fait partie des leviers identifiés pour inverser la tendance en réduisant l’empreinte environnementale du numérique. Ce terme désigne « l’intégration des caractéristiques environnementales dans la conception du produit en vue d’améliorer la performance environnementale du produit tout au long de son cycle de vie ».
Le référentiel général de l’écoconception des services numériques est un document technique destiné aux experts et métiers du numérique souhaitant mettre en œuvre une démarche d’écoconception pour un service(sites, applications, IA, logiciels, API). Il a été élaboré par l’Arcep et l’Arcom, en collaboraiton avec l’ADEME, la DINUM, la CNIL et l’Inria.
La pensée de Félix Guattari permet d’éclairer les coûts cachés des IA génératives, qui s’appuient sur un extractivisme pillant les ressources naturelles et culturelles.
Quelle que soit leur utilité potentielle, la généralisation de ces systèmes semble donc aller de pair avec un épuisement des ressources naturelles, au détriment des besoins fondamentaux des citoyens et de l’avenir de nos écosystèmes communs.
Les systèmes sollicitant une intelligence artificielle (IA) consomment de l’énergie et des ressources pour fonctionner. Mais concevoir des IA qui consomment le moins possible, c’est prendre le risque de subir l’effet rebond : quand l’efficience d’une IA la rend moins coûteuse et plus facile à embarquer, son utilisation peut augmenter… et son impact environnemental avec ! Initiative du ministère de la Transition écologique et de la cohésion des territoires, l’AFNOR Spec 2314 énonce des méthodologies de calcul et des bonnes pratiques pour mesurer et réduire l’impact environnemental de l’IA, et pour communiquer avec des allégations justes et vérifiables.
Les centres de données, ces infrastructures essentielles au fonctionnement de l’ère numérique, sont au cœur d’une controverse majeure. Selon une analyse récente, entre 2020 et 2022, les émissions de gaz à effet de serre des centres de données appartenant à des géants de la technologie comme Google, Microsoft, Meta et Apple étaient environ 662% plus élevées que ce qu’ils ont déclaré officiellement. Cette révélation soulève des questions cruciales sur la transparence et la responsabilité environnementale de ces entreprises.
Artificial intelligence (AI) has an environmental cost. Beginning with the extraction of raw materials and the manufacturing of AI infrastructure, and culminating in real-time interactions with users, every aspect of the AI lifecycle consumes natural resources – energy, water, and minerals – and releases greenhouse gases. The amount of energy needed to power AI now outpaces what renewable energy sources can provide, and the rapidly increasing usage of AI portends significant environmental consequences. The goal of this primer is to shed light on the environmental impacts of the full AI lifecycle, describing which kinds of impacts are at play when, and why they matter.
Trois chercheuses de la plateforme d'hébergement de projets d'IA Hugging Face, Sasha Luccioni, Bruna Trevelin et Margaret Mitchell ont rassemblé les connaissances disponibles actuellement à propos de l'impact de l'IA sur l'environnement. Elles constatent encore trop peu de transparence sur les besoins énergétiques de chaque application d'IA, elles parcourent l'ensemble des connaissances actuellement disponibles.