3 liens privés
The deal represents the first corporate agreement for multiple deployments of a single advanced reactor design in the United States.
Alameda, CA – October 14, 2024 – Kairos Power and Google have signed a Master Plant Development Agreement, creating a path to deploy a U.S. fleet of advanced nuclear power projects totaling 500 MW by 2035. Under the agreement, Kairos Power will develop, construct, and operate a series of advanced reactor plants and sell energy, ancillary services, and environmental attributes to Google under Power Purchase Agreements (PPAs). Plants will be sited in relevant service territories to supply clean electricity to Google data centers, with the first deployment by 2030 to support Google’s 24/7 carbon-free energy and net zero goals.
I’m beginning to suspect that one of the most common misconceptions about LLMs such as ChatGPT involves how “training” works. A common complaint I see about these tools is that people don’t want to even try them out because they don’t want to contribute to their training data. This is by no means an irrational position to take, but it does often correspond to an incorrect mental model about how these tools work.
Short version: ChatGPT and other similar tools do not directly learn from and memorize everything that you say to them.
The popularisation of artificial intelligence (AI) has given rise to imaginaries that invite alienation and mystification. At a time when these technologies seem to be consolidating, it is pertinent to map their connections with human activities and more than human territories. What set of extractions, agencies and resources allow us to converse online with a text-generating tool or to obtain images in a matter of seconds?
There are many use cases for generative AI, spanning a vast number of areas of domestic and work life. Looking through thousands of comments on sites such as Reddit and Quora, the author’s team found that the use of this technology is as wide-ranging as the problems we encounter in our lives. The 100 categories they identified can be divided into six top-level themes, which give an immediate sense of what generative AI is being used for: Technical Assistance & Troubleshooting (23%), Content Creation & Editing (22%), Personal & Professional Support (17%), Learning & Education (15%), Creativity & Recreation (13%), Research, Analysis & Decision Making (10%).
Artificial intelligence had its breakout year in 2023, with large language models (LLMs) and text-to-image generators capturing the attention and imagination of technologists and investors alike.
Tech CEOs want us to believe that generative AI will benefit humanity. They are kidding themselves.
Why call the errors “hallucinations” at all? Why not algorithmic junk? Or glitches? Well, hallucination refers to the mysterious capacity of the human brain to perceive phenomena that are not present, at least not in conventional, materialist terms. By appropriating a word commonly used in psychology, psychedelics and various forms of mysticism, AI’s boosters, while acknowledging the fallibility of their machines, are simultaneously feeding the sector’s most cherished mythology: that by building these large language models, and training them on everything that we humans have written, said and represented visually, they are in the process of birthing an animate intelligence on the cusp of sparking an evolutionary leap for our species.
Artificial intelligence (AI) has an environmental cost. Beginning with the extraction of raw materials and the manufacturing of AI infrastructure, and culminating in real-time interactions with users, every aspect of the AI lifecycle consumes natural resources – energy, water, and minerals – and releases greenhouse gases. The amount of energy needed to power AI now outpaces what renewable energy sources can provide, and the rapidly increasing usage of AI portends significant environmental consequences. The goal of this primer is to shed light on the environmental impacts of the full AI lifecycle, describing which kinds of impacts are at play when, and why they matter.